

Common Platform Enumeration: 1

Naming Specification 2

Version 2.3 (DRAFT) 3

Brant A. Cheikes 4

David Waltermire5

NIST Interagency Report 7695
(DRAFT)

 6

7 Common Platform Enumeration: Naming
Specification Version 2.3 (DRAFT)

Brant A. Cheikes
David Waltermire

C O M P U T E R S E C U R I T Y
Computer Security Division
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

August 2010

U.S. Department of Commerce

Gary Locke, Secretary

National Institute of Standards and Technology

Dr. Patrick D. Gallagher, Director

NIST Interagency Report 7695
(DRAFT)

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 ii

Reports on Computer Systems Technology 8

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology 9
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s 10
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of 11
concept implementations, and technical analysis to advance the development and productive use of 12
information technology. ITL’s responsibilities include the development of technical, physical, 13
administrative, and management standards and guidelines for the cost-effective security and privacy of 14
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s 15
research, guidance, and outreach efforts in computer security and its collaborative activities with industry, 16
government, and academic organizations. 17

 18

 19

 20
 21
 22

 23
 24
 25
 26
 27
 28
 29

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Interagency Report 7695 (DRAFT)
50 pages (August 2010)

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 iii

Acknowledgments 30

The authors, Brant A. Cheikes of the MITRE Corporation and David Waltermire of NIST wish to thank 31
their colleagues who reviewed drafts of this document and contributed to its technical content. The 32
authors would like to acknowledge Harold Booth of NIST, Paul Cichonski of Booz Allen Hamilton, Seth 33
Hanford of Cisco Systems, Inc., Tim Keanini of nCircle, Kent Landfield of McAfee, Inc., Mary Parmelee 34
of the MITRE Corporation, Jim Ronayne of Cobham plc, and Shane Shaffer of G2, Inc. for their insights 35
and support throughout the development of the document. 36

Abstract 37

Following security best practices is essential to maintaining the security and integrity of today’s 38
Information Technology (IT) systems and the data they store. Given the speed with which attackers 39
discover and exploit new vulnerabilities, best practices need to be continuously refined and updated at 40
least as fast as the attackers can operate. To meet this challenge, security automation has emerged as an 41
advanced computer-security technology intended to help information system administrators assess, 42
manage, maintain and upgrade the security posture of their IT infrastructures regardless of their 43
enterprises’ scale, organization and structure. The United States government, under the auspices of the 44
National Institute of Standards and Technology (NIST), has established the Security Content Automation 45
Protocol (SCAP—cf. scap.nist.gov) to foster the development and adoption of security automation 46
standards and data resources. 47

The Common Platform Enumeration (CPE) addresses the security automation community’s need for a 48
standard method to identify and describe the software systems and hardware devices present in an 49
enterprise’s computing asset inventory. Four specification documents comprise the CPE stack: 50

1. Naming 51
2. Matching 52
3. Dictionary 53
4. Language 54

The Naming specification—this document—defines the logical structure of well-formed CPE names 55
(WFNs), and the procedures for binding and unbinding WFNs to and from machine-readable encodings. 56
The Matching specification defines the procedures for comparing WFNs to determine whether they refer 57
to some or all of the same products or platforms. The Dictionary specification defines the concept of a 58
dictionary of identifiers, and prescribes high-level rules for dictionary curators. The Language 59
specification defines an approach for forming complex logical expressions out of WFNs. Collectively, 60
the CPE specification stack aims to deliver these capabilities to the security automation community: 61

• A method for assigning unique machine-readable identifiers to certain classes of IT products and 62
computing platforms; 63

• A method for curating (compiling and maintaining) dictionaries (repositories) of machine-64
readable product and platform identifiers; 65

• A method for constructing machine-readable referring expressions which can be mechanically 66
compared (i.e., by a computer algorithm or procedure) to product/platform identifiers to 67
determine whether the identifiers satisfy the expressions; 68

• A set of interoperability requirements which guarantee that heterogeneous tools can select and 69
use the same unique identifiers to refer to the associated products and platforms. 70

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 iv

Audience 71

This specification document defines standardized data models and machine encodings for creating 72
product descriptions and identifiers. These models and encodings are envisaged to be of interest to the 73
following audiences: 74

a. Asset inventory tool developers. Asset inventory tools inspect computing devices and assemble 75
catalogs that list installed component hardware and software elements. In the absence of CPE, 76
there is no standardized means for how these tools should report what they find. The CPE 77
specification stack provides all the technical elements needed to comprise such a capability. 78
Furthermore, CPE is intended to address the needs of asset inventory tool developers regardless 79
of whether the tools have credentialed (authenticated) access to the computing devices subject to 80
inventory. 81

b. Security content automation tool developers. Many security content automation tools are 82
fundamentally concerned with making fully- or partially-automated information system security 83
decisions based on collected information about installed products. The CPE specification stack 84
provides a framework that supports correlation of information about identical products installed 85
across the enterprise, and association of vulnerability, configuration, remediation and other 86
security-policy information with information about installed products. 87

c. Security content authors. Security content authors are concerned with creating machine-88
interpretable documents that define organizational policies and procedures pertaining to 89
information systems security, management and enforcement. Often there is a need to tag 90
guidance, policy, etc., documents with information about the product(s) to which the guidance, 91
policy, etc., applies. These tags are called applicability statements. The CPE specification stack 92
provides a standardized mechanism for creating applicability statements which can be used to 93
ensure that guidance is invoked as needed when the product(s) to which it applies is discovered to 94
be installed within an enterprise. 95

96

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 v

Table of Contents 97

1. INTRODUCTION ... 1 98
1.1 PURPOSE AND SCOPE ... 1 99
1.2 SCOPE ... 2 100

1.2.1 Description vs. Identification.. 2 101
1.2.2 Class vs. Instance ... 3 102
1.2.3 Out of Scope ... 3 103

1.3 NORMATIVE REFERENCES ... 4 104
1.4 DOCUMENT STRUCTURE ... 4 105
1.5 DOCUMENT CONVENTIONS ... 5 106

2. TERMS, DEFINITIONS AND ABBREVIATIONS .. 6 107
2.1 TERMS AND DEFINITIONS .. 6 108

2.1.1 Application ... 6 109
2.1.2 Asset Inventory Tool ... 6 110
2.1.3 Bind .. 6 111
2.1.4 Bundle .. 6 112
2.1.5 Component... 7 113
2.1.6 Computing Device .. 7 114
2.1.7 Configuration Item ... 7 115
2.1.8 Hardware Device .. 7 116
2.1.9 Operating System... 7 117
2.1.10 Platform ... 7 118
2.1.11 Product ... 8 119
2.1.12 Release ... 8 120
2.1.13 Software ... 8 121
2.1.14 Software Creator .. 8 122
2.1.15 Software Manufacturer ... 8 123
2.1.16 Software Package .. 8 124
2.1.17 Unbind.. 9 125
2.1.18 Uniform Resource Identifier ... 9 126

2.2 ABBREVIATED TERMS ... 9 127

3. CONFORMANCE .. 10 128
4. RELATIONSHIP TO EXISTING SPECIFICATIONS AND STANDARDS .. 11 129

4.1 RELATIONSHIP TO CPE V2.2 ... 11 130
4.2 RELATIONSHIP TO ISO/IEC 19770-2 ... 11 131

5. DATA MODEL OVERVIEW .. 12 132
5.1 MOTIVATION ... 12 133
5.2 DEFINITIONS AND NOTATION ... 12 134

5.2.1 Well-Formed CPE Name ... 12 135
5.2.2 Notation ... 13 136

5.3 WELL-FORMEDNESS CRITERIA ... 13 137
5.4 ATTRIBUTES ... 13 138
5.5 REQUIREMENTS ON ATTRIBUTE VALUES IN WFNS ... 14 139

5.5.1 Logical values of WFNs .. 14 140
5.5.2 Restrictions on attribute value strings ... 14 141
5.5.3 Per-attribute value restrictions .. 15 142

5.6 OPERATIONS ON WFNS ... 18 143
5.6.1 Function new() ... 18 144
5.6.2 Function get(w,a) ... 18 145

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 vi

5.6.3 Function set(w,a,v) ... 18 146
5.7 EXAMPLES ... 18 147

6. IMPLEMENTATION AND BINDING .. 20 148
6.1 NOTES ON PSEUDO-CODE ... 20 149
6.2 URI BINDING ... 20 150

6.2.1 URI Binding Syntax ... 20 151
6.2.2 Binding a WFN to a URI ... 21 152
6.2.3 Unbinding a URI to a WFN ... 27 153

6.3 FORMATTED STRING BINDING ... 31 154
6.3.1 Syntax for Formatted String Binding .. 32 155
6.3.2 Binding a WFN to a formatted string ... 33 156
6.3.3 Unbinding a formatted string to a WFN .. 36 157

7. CONVERSIONS ... 40 158
7.1 CONVERTING A URI TO A FORMATTED STRING .. 40 159
7.2 CONVERTING A FORMATTED STRING TO A URI .. 40 160

APPENDIX A— USE CASES .. 41 161
A.1 SOFTWARE INVENTORY USE CASE ... 41 162
A.2 NETWORK-BASED DISCOVERY USE CASE .. 41 163
A.3 FORENSIC ANALYSIS/SYSTEM ARCHITECTURE USE CASE .. 42 164
A.4 IT MANAGEMENT USE CASE ... 42 165

APPENDIX B— CHANGE LOG .. 43 166
 167

List of Figures and Tables 168

Figure 1-1: CPE Specification Stack 169 .. 2
Figure 5-1: ABNF Grammar for Attribute Value Strings 170 ... 15
Figure 6-1: ABNF for URI Binding 171 ... 21
Figure 6-2: ABNF for Formatted String Binding 172 ... 32
 173

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 1

1. Introduction 174

1.1 Purpose and Scope 175

Following security best practices is essential to maintaining the security and integrity of today’s 176
Information Technology (IT) systems and the data they store. Given the speed with which attackers 177
discover and exploit new vulnerabilities, best practices need to be continuously refined and updated at 178
least as fast as the attackers can operate. To meet this challenge, security automation has emerged as an 179
advanced computer-security technology intended to help information system administrators assess, 180
manage, maintain and upgrade the security posture of their IT infrastructures regardless of their 181
enterprises’ scale, organization and structure. The United States government, under the auspices of the 182
National Institute of Standards and Technology (NIST), has established the Security Content Automation 183
Protocol (SCAP—cf. scap.nist.gov) to foster the development and adoption of security automation 184
specifications and data resources.1

The foundation of an effective security automation system is the capability to completely and 186
unambiguously characterize the software systems, hardware devices and network connections which 187
comprise an enterprise’s computing infrastructure. With a detailed computing asset inventory in hand, 188
one can begin to integrate and correlate a wealth of other knowledge about, e.g., vulnerabilities and 189
exposures,

 185

2 configuration issues and best-practice configurations,3 security checklists,4 impact metrics,5

The Common Platform Enumeration (CPE) addresses the security automation community’s need for a 192
standardized method to identify and describe the software systems and hardware devices present in an 193
enterprise’s computing asset inventory. Four specification documents comprise the CPE stack: 194

 190
and more. 191

1. Naming 195
2. Matching 196
3. Dictionary 197
4. Language 198

The Naming specification—this document—defines the logical structure of well-formed CPE names 199
(WFNs), and the procedures for binding and unbinding WFNs to and from machine-readable encodings. 200
The Matching specification defines the procedures for comparing WFNs to determine whether they refer 201
to some or all of the same products or platforms. The Dictionary specification defines the concept of a 202
dictionary of identifiers, and prescribes high-level rules for dictionary curators. The Language 203
specification defines a standardized structure for forming complex logical expressions out of WFNs. 204
These four specifications are arranged in a specification stack as depicted in Figure 1-1. Henceforward 205
we will refer to this stack as the CPE specification stack, and we will refer to the four-document set of 206
specifications as the CPE specification suite. 207

1 For more information on SCAP, cf. NIST Special Publication 800-117, Guide to Adopting and Using the Security Content
Automation Protocol, http://csrc.nist.gov/publications/drafts/800-117/draft-sp800-117.pdf.
2 See, e.g., MITRE’s Common Vulnerabilities and Exposures (CVE) project, on the web at cve.mitre.org.
3 See, e.g., MITRE’s Common Configuration Enumeration (CCE) project, on the web at cce.mitre.org, and also the Federal
Desktop Core Configuration (FDCC), on the web at fdcc.nist.gov.
4 See, e.g., the National Checklist Program Repository, on the web at checklists.nist.gov.
5 See, e.g., the Common Vulnerability Scoring System, on the web at nvd.nist.gov/cvss.cfm.

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 2

 208
Figure 1-1: CPE Specification Stack 209

Collectively, the CPE specification stack aims to deliver these capabilities to the security automation 210
community: 211

• A method for assigning unique machine-readable identifiers to certain classes of IT products and 212
computing platforms; 213

• A method for curating (compiling and maintaining) dictionaries (repositories) of machine-214
readable product and platform identifiers; 215

• A method for constructing machine-readable referring expressions which can be mechanically 216
compared (i.e., by a computer algorithm or procedure) to product/platform identifiers to 217
determine whether the identifiers satisfy the expressions; 218

• A set of interoperability requirements which guarantee that heterogeneous security automation 219
tools can select and use the same unique identifiers to refer to the associated products and 220
platforms. 221

1.2 Scope 222

The CPE Naming Specification defines the concepts of description and identification (cf. Section 1.2.1), 223
and applies these concepts types of computing products: 224

1. Applications (cf. Section 2.1.1) 225
2. Operating systems (cf. Section 2.1.9) 226
3. Hardware devices (cf. Section 2.1.8) 227

The CPE Naming Specification is concerned solely with describing and identifying product classes rather 228
than product instances (cf. Section 1.2.2). 229

1.2.1 Description vs. Identification 230

The primary purpose of this specification is to provide a standardized framework for distinguishing 231
information that identifies an individual product from information that merely describes a (possibly 232
empty) set of products. In general terms, when one describes an entity in some domain of reference, one 233
enumerates a set of attributes and their values possessed by that entity, for the purpose of helping a 234
consumer of that description to distinguish that entity from other entities in the domain. For example, Joe 235
might describe his car as a “2004 Subaru Outback with a black leather interior”. Conceptually, this 236
description could be modeled as a set of attribute=value pairs, e.g., 237

[year=2004, maker=subaru, model=outback, interior_color=black, interior_material=leather] 238

A description is said to be ambiguous relative to a defined universe of entities when the description is 239
insufficient to enable an interpreter to distinguish a unique entity in the universe possessing all specified 240
attributes and values. The above description is ambiguous relative to the universe of, e.g., all automobiles 241

COMMON PLATFORM ENUMERATION: NAMING SPECIFICATION VERSION 2.3 (DRAFT)

 3

registered in the state of Massachusetts, but might not be ambiguous given a more narrowly defined 242
universe (e.g., all automobiles registered in a particular nine-digit postal code region). To identify an 243
entity is to uniquely describe it, and while under some circumstances a description may also be an 244
identifier, an identifier is typically a symbol (alphanumeric or graphic) which serves as an index for 245
picking a unique individual out of a universe of individuals. 246

The scope of the CPE Naming Specification encompasses description as well as identification. The 247
specification describes a standardized method for forming (possibly ambiguous) descriptions of 248
applications, operating systems, and hardware devices, as well as identifiers for applications, operating 249
systems, and hardware devices. 250

1.2.2 Class vs. Instance 251

When describing or identifying applications, operating systems, and hardware devices, the CPE Naming 252
Specification addresses only the description or identification of product classes rather than product 253
instances. A “product instance” is a unique, physically discernable entity in the world—such as a specific 254
licensed and configured installation of a product on a particular computing device owned by XYZ Corp. 255
and physically installed in a particular location in the world. A “product class” is a set-theoretic 256
abstraction over product instances. For example, one might say that the computing device owned by 257
XYZ Corp. is a member of the class of computing devices known as “Lenovo ThinkPad X61”. 258

Classes may be defined at varying levels of abstraction, e.g., “all computing devices manufactured by 259
Lenovo”, “all laptops manufactured by Lenovo”, “all ThinkPads manufactured by Lenovo”, etc. The 260
CPE Naming Specification leaves all decisions about what constitutes useful or needed abstractions to the 261
users. The Naming Specification takes the view that all names constitute descriptions of product classes, 262
and the degree of abstraction of the description varies in proportion to the quantity of attribute-value pairs 263
specified. A description is more concrete (less abstract) to the extent that it contains more attribute-value 264
pairs, and less concrete (more abstract) to the extent that it contains fewer attribute-value pairs. 265

A description becomes an identifier relative to a defined universe of individuals when the description 266
contains sufficient information to select a single individual from the universe. 267

1.2.3 Out of Scope 268

The following aspects of description and naming are outside the scope of the CPE Naming Specification: 269
• Representing relationships (e.g., part-of, bundled-with, released-before/after, same-as) between 270

products described or identified; 271
• Representing user-defined configurations of installed products; 272
• Representing entitlement/licensing information about products; 273
• Defining procedures and guidelines for assigning “correct” or “valid” values to attributes of 274

product descriptions or identifiers; 275
• Defining procedures and guidelines for creating or maintaining valid-values lists.276

 4

1.3 Normative References 277

The following documents are indispensible references for understanding the application of this 278
specification. 279

[CPE22] Buttner, A. and N. Ziring. (2009). Common Platform Enumeration—Specification. Version 2.2 280
dated 11 March 2009. See: http://cpe.mitre.org/specification/spec_archive.html. 281

[ISO19770-2] ISO/IEC 19770-2. (2009). Software Identification Tag. November 2009. See: 282
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53670. 283

[RFC2119] Bradner, S. (1997). Key words for use in RFCs to Indicate Requirement Levels. March 284
1997. See http://www.ietf.org/rfc/rfc2119.txt. 285

[RFC2234] Crocker, D. and P. Overell. (1997). Augmented BNF for Syntax Specifications: ABNF. 286
Internet RFC 2234, November 1997. See: http://www.ietf.org/rfc/rfc2234.txt. 287

[RFC3986] Berners-Lee, T., Fielding, R. and L. Masinger. (2005). Uniform Resource Identifier (URI): 288
Generic Syntax. Internet RFC 3986, January 2005. See: http://www.ietf.org/rfc/rfc3986.txt. 289

[RFC4646] Phillips, A. and M. Davis. (2006). Tags for Identifying Languages. RFC 4646, 290
September 2006. See: http://www.ietf.org/rfc/rfc4646.txt. 291

[SCAP800-117] NIST Special Publication 800-117, Guide to Adopting and Using the Security Content 292
Automation Protocol. See: http://csrc.nist.gov/publications/drafts/800-117/draft-sp800-117.pdf. 293

[TUCA] Common Platform Enumeration (CPE) Technical Use Case Analysis. White Paper, The 294
MITRE Corporation, November 2008. See: http://cpe.mitre.org/about/use_cases.html. 295

1.4 Document Structure 296

This specification document is organized as follows: 297
• Section 2 defines the key terms and abbreviations used herein; 298
• Section 3 defines what it means for an implementation or organization to conform with this 299

specification; 300
• Section 4 places this specification in the context of related specifications and standards; 301
• Section 5 defines the data model of well-formed CPE names; 302
• Section 6 defines the procedures for binding and unbinding well-formed names into and out of 303

formats suitable for machine interchange and processing; 304
• Section 7 defines the procedures for converting between bound forms; 305
• Appendix A provides informational notes on intended use cases; 306
• Appendix B documents per-release changes to this specification over time. 307

 5

1.5 Document Conventions 308

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, 309
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 310
interpreted as described in [RFC2119]. 311

Text intended to represent computing system input, output, or algorithmic processing is presented in 312
fixed-width Courier font. 313

Normative references are listed in Section 1.3 of this document. The following reference citation 314
conventions are used in the text of this document: 315

• For normative references, a square bracket notation containing an abbreviation of the overall 316
reference citation, followed by a colon and subsection citation where applicable (e.g. [CPE-317
N:5.2.1] is a citation for CPE Naming specification, Section 5.2.1); 318

• For references within this document (internal references) and non-normative references, a 319
parenthetical notation containing the “cf.” (compare) abbreviation followed by a section number 320
for internal references or an external reference, (e.g. (cf. 2.1.4) is a citation for Section 2.1.4 of 321
this document). 322

 6

2. Terms, Definitions and Abbreviations 323

This section defines a set of common terms used within the document. Many terms have been imported 324
from Section 4 of [ISO19770-2]. These are indicated by appending the particular subsection citation to 325
the overall reference citation separated by a colon, e.g., [ISO19770-2:4.1.1]. 326

2.1 Terms and Definitions 327

2.1.1 Application 328

An application is a system for collecting, saving, processing, and presenting data by means of a computer 329
[ISO19770-2:4.1.1]. 330

Notes: 331
• The term application is generally used when referring to a component of software that can be 332

executed. 333
• The term application and software application are often used synonymously. 334

2.1.2 Asset Inventory Tool 335

An asset inventory tool is an application which runs within an enterprise’s computing infrastructure and 336
enumerates the computing devices and products comprising that infrastructure. 337

2.1.3 Bind 338

To bind means to connect two things together. In the context of this specification, to bind means to 339
deterministically transform a logical construct into a machine-readable representation suitable for 340
machine interchange and processing. The result of this transformation is called a binding. A binding may 341
also be referred to as the “bound form” of its associated logical construct. 342

2.1.4 Bundle 343

A bundle is a grouping of products which is the result of a marketing/licensing strategy to sell use rights 344
to multiple products as one purchased item [ISO19770-2:4.1.2]. 345

Note: 346
A bundle can be referred to as a “suite”, if the products are closely related and typically integrated 347
(such as an office suite containing a spreadsheet, word processor, presentation and other related 348
items). 349

 7

2.1.5 Component 350

A component is an entity with discrete structure, such as an assembly or software module, within a system 351
considered at a particular level of analysis [ISO19770-2:4.1.3]. 352

Note: 353
Component refers to a part of a whole, such as a component of a software product, a component 354
of a software identification tag, etc. 355

2.1.6 Computing Device 356

A computing device is a functional unit that can perform substantial computations, including numerous 357
arithmetic operations and logic operations without human intervention [ISO19770-2:4.1.4]. 358

Note: 359
A computing device can consist of a stand-alone unit, or several interconnected units. It can also 360
be a device that provides a specific set of functions, such as a phone or a personal organizer, or 361
more general functions such as a laptop or desktop computer. 362

2.1.7 Configuration Item 363

A configuration item is an item or aggregation of hardware or software or both that is designed to be 364
managed as a single entity [ISO19770-2:4.1.5]. 365

Note: 366
Configuration items may vary widely in complexity, size and type, ranging from an entire system 367
including all hardware, software and documentation, to a single module, a minor hardware 368
component or a single software package. 369

2.1.8 Hardware Device 370

A hardware device is a discrete physical component of an information technology system or 371
infrastructure. A hardware device may or may not be a computing device (e.g., a network hub, a webcam, 372
a keyboard, a mouse). 373

2.1.9 Operating System 374

An operating system is the software on a computing device that manages the way different applications 375
use its hardware, and regulates the ways that users control the computer [Wikipedia]. 376

2.1.10 Platform 377

A platform is a computer or hardware device and/or associated operating system, or a virtual 378
environment, on which software can be installed or run [ISO19770-2:4.1.17]. 379

Note: 380
Examples of platforms include Linux™, Microsoft Vista®, and Java. 381

 8

2.1.11 Product 382

A product is a complete set of computer programs, procedures and associated documentation and data 383
designed for delivery to a software consumer [ISO19770-2:4.1.19]. 384

Note: 385
The terms “product” and “software package” are used interchangeably depending on the context 386
of the item described. 387

2.1.12 Release 388

A release is a collection of new and/or changed configuration items which are tested and introduced into 389
a production environment together [ISO19770-2:4.1.21]. 390

2.1.13 Software 391

Software is all or part of the programs, procedures, rules, and associated documentation of an information 392
processing system [ISO19770-2:4.1.25]. 393

2.1.14 Software Creator 394

A software creator is a person or organization that creates a software product or package [ISO19770-395
2:4.1.28]. 396

Note: 397
This entity might or might not own the rights to sell or distribute the software. 398

2.1.15 Software Manufacturer 399

A software manufacturer is a group of people or an organization that develops software, typically for 400
distribution and use by other people or organizations [ISO19770-2:4.1.34]. 401

2.1.16 Software Package 402

A software package is a complete and documented set of programs supplied for a specific application or 403
function [ISO19770-2:4.1.35]. 404

Notes: 405
• In the context of the CPE Naming Specification, the term software package refers to the set of 406

files associated with a specific set of business functionality that can be installed on a computing 407
device and has a set of specific licensing requirements. 408

• The terms “product” and “software package” may be used synonymously depending on the 409
context of the item described. 410

 9

2.1.17 Unbind 411

In general terms, to unbind means to disconnect two things from one another. In the context of this 412
specification, to unbind means to deterministically transform a binding into its logical-form construct. 413

2.1.18 Uniform Resource Identifier 414

A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or 415
physical resource available on the Internet. 416

Note: 417
The syntax used for URIs is defined in [RFC3986]. 418

2.2 Abbreviated Terms 419

CPE Common Platform Enumeration 420
IT Information Technology 421
NIST National Institute of Standards and Technology 422
SCAP Security Content Automation Protocol 423
WFN Well-formed Name 424
URI Uniform Resource Identifier 425

 10

3. Conformance 426

Products may want to claim conformance with this specification for a variety of reasons. This section 427
provides the high-level requirements that must be met by any implementation seeking to claim 428
conformance with this specification. 429

Implementations conforming to this specification MUST: 430
1. Make an explicit claim of conformance to this specification in any documentation provided to end 431

users. 432
2. Produce and/or consume syntactically correct Formatted String bindings as needed to describe or 433

identify applications, operating systems and hardware devices (cf. 6.3). 434

In addition, if the implementation is a consumer of CPE names, to claim conformance to this specification 435
it SHOULD be able to consume (i.e., accept as valid input) any CPE name that meets the requirements 436
specified in [CPE22], and, if necessary, to convert that CPE name to a syntactically correct Formatted 437
String binding (cf. 7.1). 438

These requirements are intended to guarantee that a conformant implementation not only can produce 439
and/or consume the newly-introduced Formatted String binding form as needed to interoperate with other 440
implementations, but also to process legacy product identifiers as well. 441

For implementations conforming to this specification it is OPTIONAL that they be able to convert any 442
syntactically correct Formatted String binding to a valid CPE name that meets the requirements specified 443
in [CPE22] (cf. 7.2). This optional feature may enable a conforming implementation to interoperate to a 444
limited extent with implementations conforming to [CPE22] and possibly prior releases as well. 445

 11

4. Relationship to Existing Specifications and Standards 446

This section is informative in nature, and is intended to characterize the relationship between this 447
specification and any related specifications or standards (both current and past). 448

4.1 Relationship to CPE v2.2 449

The CPE specification suite is intended to replace [CPE22]. Whereas [CPE22] defined all elements of the 450
CPE specification in a single document, starting with this release the design has been changed to a stack 451
model. In the stack model, capabilities are built incrementally out of simpler, more narrowly defined 452
elements that are specified lower in the stack. This design opens opportunities for innovation, as novel 453
capabilities can be defined by combining only the needed elements, and the impacts of change can be 454
better compartmentalized and managed. The CPE specification stack and specification suite are intended 455
to provide all the capabilities made available by [CPE22] while adding new features suggested by the 456
CPE user community. 457

4.2 Relationship to ISO/IEC 19770-2 458

The International Organization for Standardization (ISO) and the International Electrotechnical 459
Commission (IEC) have published ISO/IEC-19770 Part 2, “Software Identification Tag”. As explained in 460
the introduction to the standard, 461

The software identification tag is an XML file containing authoritative identification and 462
management information about a software product. The software identification tag is 463
installed and managed on a computing device together with the software product. The tag 464
may be created as part of the installation process, or added later for software already 465
installed without tags. However, it is expected more commonly that the tag will be 466
created when the software product is originally developed, and then be distributed and 467
installed together with the software product. [ISO19770-2], p. vi. 468

Both the CPE specification stack and ISO/IEC-19770-2 address the need to standardize the way products 469
are identified. CPE differs, however, in a number of respects: 470

• The scope of CPE is somewhat broader, including hardware devices as well as software, and 471
distinguishes operating systems from general software applications; 472

• CPE emphasizes the development and use of “common identifiers” enabling a wide variety of 473
information about the same product or class of products to be correlated; 474

• CPE provides support for the creation of product descriptions as well as product identifiers. 475

There are also many areas in which the two efforts overlap or complement one another. Published in 476
November 2009, ISO/IEC 19770-2 is a relatively new standard that is in the process of raising industry 477
awareness and building its user base. As such, we expect that the similarities and differences between the 478
two efforts will become increasingly evident as both continue to mature. 479

 12

5. Data Model Overview 480

This section defines the foundational logical construct of the CPE specification suite—the well-formed 481
CPE name, abbreviated WFN. 482

5.1 Motivation 483

[CPE22] defines the CPE name as a multi-component URI obeying a specified grammar. The present 484
specification departs significantly from that practice by first introducing a logical construct—the well-485
formed name (WFN)—then defining procedures for binding and unbinding this construct to and from 486
machine-readable representations. 487

The principal motivation in doing so was to create opportunities for future growth and innovation in the 488
ways in which machines exchange product descriptions. During the development of this specification a 489
clear need was recognized to define at least two different machine-readable representations (sometimes 490
called “transports”) for product descriptions, one for backward compatibility with prior releases of the 491
CPE specifications, and a second to provide critical new features demanded by the user community. As 492
work advanced, community members proposed additional transport representations for consideration. As 493
the inventory of potential representations increased, it became clear that there could be serious challenges 494
involved in defining numerous conversions among transports and procedures for pair-wise comparison. 495
Consequently, an abstract canonical form—a kind of interlingua—was chosen to serve as the standardized 496
form for processing CPE information. 497

Using this interlingua it is possible to define conversions simply in terms of transforms into and out of the 498
canonical form, and define matching and other higher-level processes in generic rather than 499
representation-specific terms. The WFN form specified below lays the foundation for new binding forms 500
to be introduced in the future without affecting other specifications defined in terms of the canonical 501
form. 502

5.2 Definitions and Notation 503

Section 5.2.1 defines the well-formed CPE name (WFN). Section 5.2.2 describes the notation convention 504
used in this specification document for illustrating WFNs. 505

5.2.1 Well-Formed CPE Name 506

A well-formed CPE name (WFN) is defined to be an unordered set of attribute-value pairs that 507
collectively (a) describe or identify a software application, operating system, or hardware device, and (b) 508
satisfy the criteria specified in Section 5.3. Unordered means that there is no prescribed order in which 509
attribute-value pairs must be listed, and there is no specified relationship (hierarchical, set-theoretic or 510
otherwise) among attributes or attribute-value pairs. 511

The WFN is a logical construct only. The WFN is not intended to be a data format, encoding, or any 512
other kind of machine-readable representation for machine interchange and processing. Rather, it is a 513
conceptual data structure—an abstract canonical form—used here for the purpose of clearly and 514
unambiguously specifying desired implementations and behaviors. There is no requirement that CPE-515
conformant tools create or manipulate WFN-like data structures internally to their implementations. 516
Section 6 describes procedures for binding WFNs to machine-readable representations for interchange 517
and processing. 518

 13

An attribute-value pair is a tuple a=v in which a (the attribute) is an alphanumeric label (used to 519
represent, e.g., a property or state of some entity), and v (the value) is the value assigned to the attribute. 520
Lexical case SHALL NOT distinguish attributes from one another, e.g., the attributes Foo, foo, FOO, etc., 521
SHALL be considered equivalent. By convention, attributes will be written in all lowercase letters, with 522
the underscore (“_”) character used to separate distinct words within an attribute. 523

The following are examples of attribute-value pairs: 524
• color=red 525
• vehicle_length=6 526
• unit=meter 527
• nickname=“Zippy” 528

5.2.2 Notation 529

When illustrating WFNs in this document the following notation will be used: 530
 wfn:[a1=v1, a2=v2, …, an=vn] 531

That is, WFNs will be notated as lists of attribute-value pairs enclosed in square brackets, prefixed with 532
the string “wfn:” This notation is used solely for the purposes of explaining and illustrating the concepts 533
and procedures specified herein. There is no requirement that implementations represent WFNs explicitly 534
or use this notation in any way. 535

5.3 Well-Formedness Criteria 536

WFNs MUST satisfy these criteria: 537
1. The attributes defined in Section 5.4 are the only permitted attributes in an attribute-value pair of 538

a WFN. 539
2. Each permitted attribute may be used at most once

5.5.1
. If an attribute is not used in a WFN, it is said 540

to be unspecified, and its value defaults to the logical value ANY (cf.). 541
3. Attribute values of WFNs must satisfy the requirements specified in Section 5.5. 542

5.4 Attributes 543

The following attributes SHALL be used to form attribute-value pairs in WFNs: 544
1. part 545
2. vendor 546
3. product 547
4. version 548
5. update 549
6. edition 550
7. language 551
8. sw_edition 552
9. target_sw 553
10. target_hw 554
11. other 555

The edition attribute SHALL be considered deprecated in this specification and its use is discouraged 556
except for backward compatibility with [CPE22]. This attribute will be referred to as the “legacy edition” 557
attribute. 558

 14

The attributes sw_edition, target_sw, target_hw, and other are newly introduced in this specification and 559
are referred to collectively as the extended attributes. 560

5.5 Requirements on Attribute Values in WFNs 561

Attributes of WFNs SHALL be assigned one of the following values: 562
1. A logical value specified in Section 5.5.1; 563
2. A character string satisfying both (a) the requirements on string values specified in Section 5.5.2, 564

and 0 (b) the per-attribute value restrictions specified in Section . 565

5.5.1 Logical values of WFNs 566

An attribute of a general WFN may be assigned one of these two logical values: 567
1. ANY (i.e., “any value”); 568
2. NA (i.e., “not applicable/no value”); 569

The logical value ANY should be assigned to an attribute when the creator of the WFN intends to express 570
the idea that there are no restrictions on acceptable values for that attribute of the product being described 571
or identified. The logical value NA should be assigned when the creator intends to express the idea that 572
there is no legal or meaningful value for that attribute of the product being described or identified. In this 573
specification we treat these two situations as equivalent: the situation in which an attribute is known to 574
have no legal or meaningful value, and the situation in which the attribute has an obtainable value which 575
is null. In both situations the logical value NA should be used. 576

At the Naming level of the CPE specification stack these distinctions have no special interpretation except 577
that different binding rules may apply. At higher levels of the stack, however, these distinctions may be 578
given special interpretations which impact behavior. 579

When transcribing WFNs in which these logical values appear, the values will be written in all uppercase 580
characters, without surrounding quotation marks, on the right side of the equal sign, as in the examples 581
below: 582

• wfn:[…,update=ANY,…] 583
• wfn:[…,update=NA,…] 584

5.5.2 Restrictions on attribute value strings 585

Value strings assigned to attributes of WFNs SHALL be non-empty contiguous strings of bytes encoded 586
using the American Standard Code for Information Interchange (US-ASCII, also known as ANSI_X3.4-587
1968). 588

When transcribing value strings in WFNs, they will be enclosed in double quotes as in the examples 589
below. The quotation marks are, of course, not considered part of the string values themselves. 590

• wfn:[…,update="sr1",…] 591
• wfn:[…,target_hw="x64",update="sp2"] 592

Value strings in WFNs SHALL satisfy all of the following general requirements: 593
a. Any lowercase letter or digit character may be used (ASCII decimals 48-57 and 97-122). 594

 15

b. The underscore (decimal 95) may be used, and is recommended for use in place of whitespace 595
characters (which are not permitted). 596

c. The backslash (decimal 92) is designated the escape character. It should be used in a value string 597
when required to modify the interpretation of the character that immediately follows (see below). 598
In these circumstances, the character following the backslash is said to be quoted. 599

d. The asterisk (decimal 42) and the question-mark (decimal 63) are designated special characters. 600
These two characters may be assigned special interpretations at higher levels of the CPE 601
specification stack. To block special interpretation of these characters, precede them with the 602
escape character, otherwise, leave them unquoted in the value string. 603

e. All other printable non-alphanumeric characters (i.e., all punctuation marks, brackets, delimiters 604
and other special-purpose symbols, except for the special characters defined above) must be 605
quoted when embedded in attribute value strings of WFNs. 606

These requirements are summarized by the ABNF grammar for avstring shown below in Figure 5-1. 607

avstring = +(unreserved / special / quoted)
unreserved = LCALPHA / DIGIT / "_"
quoted = escape (escape / special / punc)
escape = "\"
special = "?" / "*"
punc = "." / "-" / ":" / "/" / "#" / "[" / "]" / "@"
 / "~" / "!" / "$" / "&" / "'" / "(" / ")" / "+"
 / "," / ";" / "=" / "{" / "}" / "|" / "`" / "%"
 / "<" / ">" / "^" / DQUOTE
DQUOTE = %x22 ; double quote
LCALPHA = %x61-7A
DIGIT = %x30-39

Figure 5-1: ABNF Grammar for Attribute Value Strings 608

Examples of allowable value strings in WFNs: 609
• "foo\-bar" (hyphen is quoted) 610
• "acrobat_reader" 611
• "\"oh_my\!\"" (quotation marks and exclamation point are quoted) 612
• "g\+\+" (plus signs are quoted) 613
• "9\.?" (period is quoted, question-mark is unquoted) 614
• "sr*" (asterisk is unquoted) 615
• "big\$money" (dollar sign is quoted) 616
• "foo\:bar" (colon is quoted) 617
• "back\\slash_software" (backslash is quoted) 618

5.5.3 Per-attribute value restrictions 619

This section specifies value restrictions that may apply to specific attributes in a WFN. In addition, 620
recommendations are provided for how suitable attribute value strings should be chosen. 621

 16

5.5.3.1 Part 622

The part attribute SHALL be one of these three string values: “a”, “o”, and “h”. 623

The value “a” SHALL be used when the WFN is intended to describe or identify a class of applications. 624

The value “o” SHALL be used when the WFN is intended to describe or identify a class of operating 625
systems. 626

The value “h” SHALL be used when the WFN is intended to describe or identify a class of hardware 627
devices. 628

5.5.3.2 Vendor 629

For the purposes of this Naming specification, any character string meeting the requirements for WFNs 630
(cf. Section 5.5.2) MAY be specified as the value of the vendor attribute. Values for this attribute 631
SHOULD be selected from an attribute-specific valid-values list. Values for this attribute SHOULD 632
describe or identify the person or organization that manufactured or created the product which is being 633
described or identified by the WFN. 634

5.5.3.3 Product 635

For the purposes of this Naming specification, any character string meeting the requirements for WFNs 636
(cf. Section 5.5.2) MAY be specified as the value of the product attribute. Values for this attribute 637
SHOULD be selected from an attribute-specific valid-values list. Values for this attribute SHOULD 638
describe or identify the most common and recognizable title or name of the product which is being 639
described or identified by the WFN. 640

5.5.3.4 Version 641

For the purposes of this Naming specification, any character string meeting the requirements for WFNs 642
(cf. Section 5.5.2) may be specified as the value of the version attribute. Values for this attribute 643
SHOULD be vendor-specific alphanumeric strings characterizing the particular release version of the 644
product which is being described or identified by the WFN. Version information SHOULD be copied 645
directly (with escaping of printable non-alphanumeric characters as required) from discoverable data and 646
not truncated or otherwise modified. 647

5.5.3.5 Update 648

For the purposes of this Naming specification, any character string meeting the requirements for WFNs 649
(cf. Section 5.5.2) MAY be specified as the value of the update attribute. Values for this attribute 650
SHOULD be selected from an attribute-specific valid-values list. Values for this attribute SHOULD be 651
vendor-specific alphanumeric strings characterizing the particular update, service pack, or point release of 652
the product which is being described or identified by the WFN. 653

 17

5.5.3.6 Edition 654

In this Naming Specification, the edition attribute SHALL be considered deprecated, and its use is 655
discouraged except where required for backward compatibility with version 2.2 of the CPE specification. 656
This attribute is referred to as the “legacy edition” attribute. 657

For the purposes of this Naming specification, any character string meeting the requirements for WFNs 658
(cf. Section 5.5.2) MAY be specified as the value of the legacy edition attribute. Values for this attribute 659
SHOULD be selected from an attribute-specific valid-values list. Values for this attribute SHOULD 660
capture edition-related terms applied by the vendor to the product which is being described or identified 661
by the WFN. 662

5.5.3.7 SW_Edition 663

The sw_edition attribute is considered to be a member of the set of extended attributes. For the purposes 664
of this Naming specification, any character string meeting the requirements for WFNs (cf. Section 5.5.2) 665
MAY be specified as the value of the sw_edition attribute. Values for this attribute SHOULD be selected 666
from an attribute-specific valid-values list. Terms used for this attribute SHOULD characterize how the 667
product being described or identified by the WFN is tailored to a particular market or class of end users. 668

5.5.3.8 Target_SW 669

The target_sw attribute is considered to be a member of the set of extended attributes. For the purposes 670
of this Naming specification, any character string meeting the requirements for WFNs (cf. Section 5.5.2) 671
MAY be specified as the value of the target_sw attribute. Values for this attribute SHOULD be selected 672
from an attribute-specific valid-values list. Terms used for this attribute SHOULD characterize the 673
software computing environment within which the product being described or identified by the WFN 674
operates. 675

5.5.3.9 Target_HW 676

The target_hw attribute is considered to be a member of the set of extended attributes. For the purposes 677
of this Naming specification, any character string meeting the requirements for WFNs (cf. Section 5.5.2) 678
MAY be specified as the value of the target_hw attribute. Values for this attribute SHOULD be selected 679
from an attribute-specific valid-values list. Terms used for this attribute SHOULD characterize the 680
physical computing platform on which the product being described or identified by the WFN operates. 681

5.5.3.10 Language 682

The value of the language attribute SHALL be a valid language tag as defined by [RFC4646]. Although 683
any valid language tag is acceptable, WFNs SHOULD only use tags containing language and region 684
codes. 685

5.5.3.11 Other 686

The value of the other attribute SHOULD be used to capture any other general descriptive or identifying 687
information which is vendor- or product-specific and which does not logically fit in any other attribute 688
value of the WFN. Values for this attribute SHOULD be selected from a valid-values list that is refined 689
over time. 690

 18

5.6 Operations on WFNs 691

Three functions are defined over WFNs: new, get, and set. These functions will be useful when defining 692
binding and unbinding procedures in Section 6. 693

5.6.1 Function new() 694

The new() function takes no arguments. The new() function returns an empty WFN (a WFN 695
containing no attribute-value pairs). 696

Example: 697
new() → wfn:[] 698

5.6.2 Function get(w,a) 699

The get(w,a) accessor function takes two arguments, a WFN w and an attribute a, and returns the 700
value of a. If the attribute a is unspecified in w, get(w,a) returns the default value ANY. 701

Examples: 702
• get(wfn:[vendor="microsoft",product="internet_explorer"],vendor) 703

→ "microsoft" 704
• get(wfn:[vendor="microsoft",product="internet_explorer"],version) 705

→ ANY 706

5.6.3 Function set(w,a,v) 707

The set(w,a,v) function takes three arguments, a WFN w, an attribute a, and a value v. If the 708
attribute a is unspecified in w, set(w,a,v) adds the attribute-value pair a=v to w. If the attribute a is 709
specified in w, set(w,a,v) replaces its value with v in w. If v is nil, set(w,a,v) deletes a from w 710
if a is specified in w, otherwise has no effect. The function always returns the new value of w. 711

Examples: 712
• set(wfn:[], vendor, "microsoft") → wfn:[vendor="microsoft"] 713
• set(wfn:[vendor="microsoft"], vendor, "adobe") → 714

wfn:[vendor="adobe"] 715
• set(wfn:[vendor="microsoft"], update, ANY) → 716

wfn:[vendor="microsoft",update=ANY] 717
• set(wfn:[vendor="microsoft"], vendor, nil) = wfn:[] 718

5.7 Examples 719

This section illustrates a variety of WFNs. The examples below are intended only to illustrate names that 720
are well formed according to the rules defined above. These examples do not necessarily illustrate 721
“correct” or “valid” assignments of values to attributes. 722

• Microsoft Internet Explorer 8.0.6001 Beta (no edition): 723
wfn:[part="a",vendor="microsoft",product="internet_explorer", 724
version="8\.0\.6001",update="beta",edition=NA] 725

 19

• Microsoft Internet Explorer 8.* SP? (no edition, any language): 726
wfn:[part="a",vendor="microsoft",product="internet_explorer", 727
version="8\.*",update= "sp? ",edition=NA,language=ANY] 728

• Identifier for HP Insight Diagnostics 7.4.0.1570 Online Edition for Windows 2003 x64: 729
wfn:[part="a",vendor="hp",product="insight_diagnostics", 730
version="7\.4\.0\.1570",sw_edition="online", 731
target_sw="windows_2003",target_hw="x64"] 732

• Identifier for HP OpenView Network Manager 7.51 (no update) for Linux: 733
wfn:[part="a",vendor="hp",product="openview_network_manager", 734
version="7\.51",update=NA,target_sw="linux"] 735

• Foo\Bar Systems Big$Money 2010 Special Edition for iPod Touch 80GB: 736
idn:[part="a",vendor="foo\\bar",product="big\$money_2010", 737
sw_edition="special",target_sw="ipod_touch",target_hw="80gb"] 738

 20

6. Implementation and Binding 739

This section defines the procedures for binding (cf. 2.1.3) WFNs to machine-readable representations, as 740
well as the procedures for unbinding (cf. 2.1.17) machine-readable representations into WFNs. 741

6.1 Notes on Pseudo-Code 742

This document uses an abstract pseudo-code programming language to specify expected computational 743
behavior. Pseudo-code is intended to be straightforwardly readable and translatable into actual 744
programming language statements. Note, however, that pseudo-code specifications are not necessarily 745
intended to illustrate efficient or optimized programming code; rather, their purpose is to clearly define 746
the desired behavior, leaving it to implementers to choose the best language-specific design which 747
respects that behavior. In some cases, particularly where standardized implementations exist for a given 748
pseudo-code function, we describe the function's behavior in prose. 749

In reading pseudo-code the following notes should be kept in mind: 750
• All pseudo-code functions are pass by reference, meaning that any changes applied to the 751

supplied arguments within the scope of the scope of the function do not affect the values of the 752
variables in the caller’s scope. 753

• In a few cases, the pseudo-code functions reference (more or less) standard library functions, 754
particularly to support string handling. In most cases semantically equivalent functions can be 755
found in the GNU C library, cf. 756
http://www.gnu.org/software/libc/manual/html_node/index.html#toc_String-and-Array-Utilities. 757

6.2 URI Binding 758

The URI Binding is included here for backward compatibility with prior releases of the CPE 759
specification. Section 5.1 of [CPE22] specifies that a CPE name is a percent-encoded URI [RFC3986] 760
with each name having the URI scheme name “cpe:”. The procedure defined here for creating a URI 761
binding ensures that when a WFN is bound to a URI, it will satisfy the requirements of [CPE22] for CPE 762
names. 763

Section 6.2.1 defines the syntax of a valid URI binding. Section 0 specifies the procedure for binding a 764
WFN to a URI. Section 6.2.3 specifies the procedure for unbinding a URI into a WFN. It is important to 765
note that the binding and unbinding functions on URIs are not necessarily symmetric—that is, if one binds 766
a WFN w1 to a URI, and then unbinds the result to a WFN w2, it is not guaranteed that w1 = w2. This is 767
due to the fact that certain WFN capabilities introduced in this specification document did not exist in 768
[CPE22] and thus cannot be encoded in a v2.2-conformant URI. So meaning may be lost in the process 769
of binding a given WFN to a URI, and this meaning cannot be recovered by the unbinding procedure. 770

6.2.1 URI Binding Syntax 771

The syntax of legal CPE URIs is specified in Appendix A of [CPE22]. It is included here in ABNF 772
notation [RFC2234] for ease of reference. 773

 21

cpe-name = "cpe:/" component-list

component-list = part ":" vendor ":" product ":" version ":" update ":"

 edition ":" lang
component-list /= part ":" vendor ":" product ":" version ":" update ":"

 edition
component-list /= part ":" vendor ":" product ":" version ":" update
component-list /= part ":" vendor ":" product ":" version
component-list /= part ":" vendor ":" product
component-list /= part ":" vendor
component-list /= part
component-list /= empty

part = "h" / "o" / "a" / empty
vendor = string
product = string
version = string
update = string
edition = string
lang = LANGTAG / empty
string = *(unreserved / pct-encoded)
empty = ""

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜" / “%”
pct-encoded = "%" HEXDIG HEXDIG
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "a" / "b" / "c" / "d" / "e" / "f"
LANGTAG = cf. [RFC4646]

Figure 6-1: ABNF for URI Binding 774

6.2.2 Binding a WFN to a URI 775

Given a WFN, the procedure to bind it to a URI is specified in pseudo-code below. The top-level binding 776
function, bind_to_URI, is called with the WFN to be bound as its only argument. The pseudo-code 777
references the defined operations on WFNs (cf. 5.6) as well as a number of helper functions also defined 778
in pseudo-code. Section 6.2.2.1 provides some important notes on the binding procedure. Section 6.2.2.2 779
summarizes the algorithm in prose. Section 6.2.2.3 provides the pseudo-code for the algorithm. Section 780
6.2.2.4 provides examples of binding WFNs to URIs. The algorithm defined here assumes that the input 781
WFN is well formed according to the well-formedness criteria defined in Section 5.3. The behavior of 782
bind_to_URI is undefined if its input is not well formed. 783

6.2.2.1 Notes on URI binding procedure 784

The procedure for binding WFNs to URIs has three noteworthy properties. 785
1. Handling of logical values: In WFNs, two logical values (ANY and NA) are defined. The 786

logical value ANY is bound to what [CPE22] calls a “blank” (i.e., a null character between two 787
colons) in the URI. The logical value NA is bound to a single hyphen. 788

2. Handling of non-alphanumeric characters: In WFN attribute value strings, non-alphanumeric 789
characters must be quoted, though the special characters “*” and “?” may appear without quoting. 790
[CPE22] requires that most non-alphanumerics be percent encoded, and makes no allowance for 791

 22

those characters to appear without percent encoding. So all quoting must be removed as part of 792
the binding procedure, followed by percent encoding as required by [CPE22]. As a result, both 793
quoted and unquoted special characters end up being percent encoded in the URI form—a second 794
aspect in which the URI binding procedure is lossy. 795

3. Packing: This specification introduces four new attributes—the extended attributes—which have 796
no assigned position in the URI binding. When these attributes have values other than ANY in 797
the WFN, they are “packed” in a special format, and in a specified order, into the edition 798
component of the URI. This special format uses the tilde character “~” as a sub-delimiter. 799
Consequently, the binding procedure deletes any tilde characters if they are embedded in the 800
value strings. This is a third aspect in which the URI binding procedure is lossy. 801

As noted above, the URI binding procedure is lossy in several ways. The capability to bind WFNs to 802
URIs is provided primarily for use by dictionary creators and maintainers, to allow them to create new 803
CPE names that take full advantage of all features introduced in this specification, while still having a 804
backward-compatible path for creating approximate names that conform to [CPE22]. This capability 805
should be used with care as CPE v2.2-conformant tools may be unable to properly match names that 806
differ in terms of packed attribute values. 807

6.2.2.2 Summary of algorithm 808

The URI binding procedure is summarized as follows: 809
1. Initialize the output URI binding to the string “cpe:/”. 810
2. BEGIN LOOP: Iterate over the seven attributes corresponding to the seven components in a v2.2 811

CPE URI [CPE22]. Get the value of each attribute and perform steps 3 thru 7. 812
3. SPECIAL HANDLING OF EDITION: When binding to a 2.2 URI, the edition component (the 813

sixth element of the URI) is used as the location to “pack” five attribute values in the WFN: 814
(legacy) edition, sw_edition, target_sw, target_hw, and other. The “packing” process involves 815
concatenating the five values together, prefixed and separated by the tilde character (which is not 816
allowed to be used in attribute value strings). The leading tilde serves as a flag indicating that the 817
contents of the edition field are a packed representation of five separate values, and the internal 818
tildes are used to aid parsing the values out. In the special case in which the four extended 819
attributes are not specified, or all are ANY, only the edition attribute is used and no packing is 820
performed. 821

4. BIND ATTRIBUTE VALUES: 822
a. For all attributes other than (legacy) “edition”, inspect the value and convert logical 823

values appropriately. If the attribute is unspecified, or its logical value is ANY, bind it to 824
blank (“”) in the URI. If the logical value is NA, bind it to the hyphen (“-”). 825

b. REMOVE ESCAPING: Scan the attribute value for any escaped characters and simply 826
remove the escaping. 827

c. APPLY PERCENT-ENCODING: Percent-encode all reserved characters remaining in 828
the attribute value string as required by [RFC3896]. 829

5. Append the attribute value string to the output URI, followed by a trailing colon. 830
6. END LOOP. 831
7. Return the output URI, trimming away all trailing colons for compactness. 832

6.2.2.3 Pseudo-code for algorithm 833

function bind_to_URI(w) 834
 ;; Top-level function used to bind a WFN w to a URI. 835
 ;; Initialize the output with the CPE v2.2 URI prefix. 836

 23

 uri := “cpe:/”. 837
 for each a in {part,vendor,product,version,update,edition,language} 838
 do 839
 if a = edition 840
 then 841
 ;; Call the pack() helper function to compute the proper 842
 ;; binding for the edition element. 843
 ed := bind_value_for_URI(get(w,edition)). 844
 sw_ed := bind_value_for_URI(get(w,sw_edition)). 845
 t_sw := bind_value_for_URI(get(w,target_sw)). 846
 t_hw := bind_value_for_URI(get(w,target_hw)). 847
 oth := bind_value_for_URI(get(w,other)). 848
 v := pack(ed,sw_ed,t_sw,t_hw,oth). 849
 else 850
 ;; Get the value for a in w, then bind to a string 851
 ;; for inclusion in the URI. 852
 v := bind_value_for_URI(get(w,a)). 853
 endif. 854
 ;; Append v to the URI then add a colon. 855
 uri := strcat(uri, v, “:”). 856
 end. 857
 ;; Return the URI string, with trailing colons trimmed. 858
 return trim(uri). 859
end. 860
 861
function bind_value_for_URI(s) 862
 ;; Takes a string s and converts it to the proper string for 863
 ;; inclusion in a CPE v2.2-conformant URI. The logical value ANY 864
 ;; binds to the blank in the 2.2-conformant URI. 865
 if s = ANY then return(“”). 866
 ;; The value NA binds to a single hyphen. 867
 if s = NA then return(“-”). 868
 ;; If we get here, we’re dealing with a string value. 869
 ;; In the URI, there is no quoting, so strip out any escape chars. 870
 s := delete_char(s,”\”). 871
 ;; Percent-encode non-alphanumerics as required by [CPE22]. 872
 s := pct_encode(s). 873
 return s. 874
end. 875
 876
function delete_char(s,badchar) 877
 ;; Returns a copy of string s with all instances of character 878
 ;; badchar removed. 879
 result := “”. 880
 idx := 0. 881
 while (idx < strlen(s)) do 882
 thischar := substr(s,idx,1). ; get the idx’th character of s. 883
 if (thischar != badchar) 884
 then 885
 ;; copy this to result. 886
 result := strcat(result,thischar). 887
 endif. 888

 24

 idx := idx + 1. 889
 end. 890
 return result. 891
end. 892
 893
function pct_encode(s) 894
 ;; Return s with any reserved characters percent-encoded. 895
 ;; We leave the implementation unspecified as there are 896
 ;; standardized algorithms for percent encoding. Only certain 897
 ;; characters embedded in s should be percent encoded as 898
 ;; follows: 899
 ;; '!' -> "%21" (exclamation mark) 900
 ;; '"' -> "%22" (double quote) 901
 ;; '#' -> "%23" (pound sign) 902
 ;; '$' -> "%24" (dollar sign) 903
 ;; '%” -> "%25" (percent sign) 904
 ;; '&' -> "%26" (ampersand) 905
 ;; '’' -> "%27" (apostrophe) 906
 ;; '(' -> "%28" (left paren) 907
 ;; ')' -> "%29" (right paren) 908
 ;; '*' -> "%2A" (asterisk) 909
 ;; '+' => "%2B" (plus sign) 910
 ;; ',' -> "%2C" (comma) 911
 ;; '/' -> "%2F" (forward slash) 912
 ;; ':' -> "%3A" (colon) 913
 ;; ';' -> "%3B" (semi-colon) 914
 ;; '<' -> "%3C" (left angle bracket) 915
 ;; '=' -> "%3D" (equal sign) 916
 ;; '>' -> "%3E" (right angle bracket) 917
 ;; '?' -> "%3F" (question mark) 918
 ;; '@' -> "%40" (at sign) 919
 ;; '[' -> "%5B" (left bracket) 920
 ;; ']' -> "%5D" (right bracket) 921
end. 922
 923
function pack(ed,sw_ed,t_sw,t_hw,o) 924
 ;; “Pack” the values of the five arguments into the single edition 925
 ;; component. If all the values are blank, just return a blank. 926
 if (sw_ed = "" and t_sw = "" and t_hw = "" and o = "") 927
 then 928
 ;; All the extended attributes are blank, so don’t do 929
 ;; any packing, just return ed. 930
 return ed. 931
 end. 932
 ;; Otherwise, pack the five values into a single string 933
 ;; prefixed and internally delimited with the tilde. 934
 ;; Because the tilde is used as a sub-delimiter, we must 935
 ;; delete it if it’s embedded in any of the value strings 936
 ;; to be packed. 937
 ed := delete_char(ed,'~'). 938
 sw_ed := delete_char(sw_ed,'~'). 939
 t_sw := delete_char(t_sw,'~'). 940

 25

 t_hw := delete_char(t_hw,'~'). 941
 o := delete_char(o,'~'). 942
 return strcat('~',ed,'~',sw_ed,'~',t_sw,'~',t_hw,'~',o). 943
end. 944
 945
function trim(s) 946
 ;; Remove trailing colons from the URI back to the first non-colon. 947
 s1 := reverse(s). 948
 idx := 0. 949
 for i := 0 to strlen(s1) do 950
 if substr(s1,i,1) = ":" 951
 then idx := idx + 1. 952
 else break. 953
 end. 954
 ;; Return the substring after all trailing colons, 955
 ;; reversed back to its original character order. 956
 return(reverse(substr(s1,idx,strlen(s1)-1))). 957
end. 958
 959
function strcat(s1, s2, ... sn) 960
 ;; Returns a copy of the string s1 with the strings s2 to sn 961
 ;; appended in the order given. 962
 ;; Cf. the GNU C definition of strcat. This function shown 963
 ;; here differs only in that it can take a variable number 964
 ;; of arguments. This is really just shorthand for, 965
 ;; strcat(s1, strcat(s2, strcat(s3, …))). 966
end. 967
 968
function strlen(s) 969
 ;; Defined as in GNU C, returns the length of string s. 970
 ;; Returns zero if the string is empty. 971
end. 972
 973
function substr(s,b,e) 974
 ;; Returns a substring of s, beginning at the b’th character, 975
 ;; with 0 being the first character, and ending at the e’th 976
 ;; character. B must be <= E. Returns nil if b >= strlen(s). 977
end. 978
 979
function reverse(s) 980
 ;; Returns a reverse copy of string S, i.e., the last character 981
 ;; becomes the first character, the second-to-last becomes the 982
 ;; second character, etc. 983
end. 984

6.2.2.4 Examples of binding a WFN to a URI 985

This section illustrates several examples of binding WFNs to URIs. 986

 26

6.2.2.4.1 Example 1 987

Suppose one had created the WFN below to describe this product: Microsoft Internet Explorer 8.0.6001 988
Beta (any language): 989

wfn:[part="a",vendor="microsoft",product="internet_explorer", 990
version="8\.0\.6001",update="beta",edition=ANY] 991

This WFN binds to the following URI: 992
cpe:/a:microsoft:internet_explorer:8.0.6001:beta 993

Note how the trailing colons are removed, such that the “edition=ANY” effectively disappears. 994

6.2.2.4.2 Example 2 995

Suppose one had created the WFN below to describe this product: Microsoft Internet Explorer 8.* SP?: 996
wfn:[part="a",vendor="microsoft",product="internet_explorer", 997
version="8\.*",update="sp? "] 998

This WFN binds to the following URI: 999
cpe:/a:microsoft:internet_explorer:8.%42:sp%63 1000

Note how the unquoted special characters in the WFN get percent-encoded in the URI. Their special 1001
functionality in the WFN does not translate to a 2.2 URI, and any special meanings are lost. If the above 1002
binding were unbound (see Section 6.2.3), the asterisk and question mark would be quoted in the resulting 1003
WFN. 1004

6.2.2.4.3 Example 3 1005

Suppose one had created the WFN below to describe this product: HP Insight Diagnostics 7.4.0.1570 1006
Online Edition for Windows 2003 x64: 1007

idn:[part="a",vendor="hp",product="insight_diagnostics", 1008
version="7\.4\.0\.1570",update=NA, 1009
sw_edition="online",target_sw="win2003",target_hw="x64"] 1010

This WFN binds to the following URI: 1011
cpe:/a:hp:insight_diagnostics:7.4.0.1570:-:~~online~win2003~x64~ 1012

Note how the legacy edition attribute as well as the four extended attributes are packed into the edition 1013
component of the URI. 1014

6.2.2.4.4 Example 4 1015

Suppose one had created the WFN below to describe this product: HP OpenView Network Manager 7.51 1016
(any update) for Linux: 1017

wfn:[part="a",vendor="hp",product="openview_network_manager", 1018
version="7\.51",target_sw="linux"] 1019

This WFN binds to the following URI: 1020
cpe:/a:hp:openview_network_manager:7.51::~~~linux~~ 1021

 27

Note how the unspecified update attribute binds to a blank in the URI, and how packing occurs in the 1022
edition component when only the target_sw attribute is specified. 1023

6.2.2.4.5 Example 5 1024

Suppose one had created the WFN below to describe this product: Foo\Bar Big$Money Manager 2010 1025
Special Edition for iPod Touch 80GB: 1026

wfn:[part="a",vendor="foo\\bar",product="big\$money_manager_2010", 1027
sw_edition="special",target_sw="ipod_touch",target_hw="80gb"] 1028

This WFN binds to the following URI: 1029
cpe:/a:foo\bar:big%24money_manager_2010:::~~special~ipod_touch~80gb~ 1030

Note how the \\ becomes a single backslash that is not percent-encoded because it’s allowed in a URI. 1031
Also note how the dollar sign is percent-encoded, and how the extended attributes are packed. 1032

6.2.3 Unbinding a URI to a WFN 1033

Given a CPE v2.2-conformant URI, the procedure to unbind it to a WFN is specified in pseudo-code 1034
below. The top-level unbinding function, unbind_URI, is called with the URI to be unbound as its only 1035
argument. The pseudo-code references the defined operations on WFNs (cf. 5.6) as well as a number of 1036
helper functions also defined in pseudo-code. Section 6.2.3.1 summarizes the algorithm in prose. Section 1037
6.2.3.2 provides the pseudo-code for the algorithm. Section 6.2.3.3 provides examples of unbinding URIs 1038
to WFNs. Note that the pseudo-code below reuses a number of helper functions defined above in Section 1039
6.2.2.3. The algorithm defined here assumes that the input URI conforms to the CPE v2.2 specification. 1040
(This is guaranteed if the URI is the result of binding a WFN.) The behavior of unbind_URI is 1041
undefined otherwise. 1042

6.2.3.1 Summary of algorithm 1043

The procedure for unbinding a URI is straightforward: 1044
1. Loop over the seven attributes corresponding to the seven CPE v2.2 components, performing 1045

steps 2 through 7. 1046
2. Parse out the string in the corresponding field of the URI. 1047
3. Decode any characters which are percent encoded. 1048
4. Insert the escape character preceding all non-alphanumerics. 1049
5. Inspect the value and unbind it if necessary into the appropriate logical value. The lone hyphen 1050

unbinds to the logical value NA, and the blank unbinds to the logical value ANY. 1051
6. Unpack the edition component if a leading tilde indicates it contains a packed collection of five 1052

attribute values. 1053
7. Set the attribute value in the WFN to the determined value. 1054

6.2.3.2 Pseudo-code for algorithm 1055

function unbind_URI(uri) 1056
 ;; Top-level function used to unbind a URI uri to a WFN. 1057
 ;; Initialize the empty WFN. 1058
 result := new(). 1059
 for i := 1 to 7 1060

 28

 do 1061
 v := get_comp_uri(uri,i). ; get the i’th component of uri 1062
 ;; unbind the parsed string. 1063
 case v: 1064
 '': v := ANY. ; convert a blank to logical ANY. 1065
 '-': v:= NA. ; convert a hyphen to logical NA. 1066
 else: 1067
 v := pct_decode(v). 1068
 end. 1069
 case i: 1070
 1: result := set(result,part,add_escaping(v)). 1071
 2: result := set(result,vendor,add_escaping(v)). 1072
 3: result := set(result,product,add_escaping(v)). 1073
 4: result := set(result,version,add_escaping(v)). 1074
 5: result := set(result,update,add_escaping(v)). 1075
 6: ;; Special handling for edition component. 1076
 ;; Unpack edition if needed. 1077
 if (v = ANY or v = NA or substr(v,0,1) != "~") 1078
 then 1079
 ;; Just a logical value or a non-packed value. 1080
 ;; So unbind to legacy edition, leaving other 1081
 ;; extended attributes unspecified. 1082
 result := set(result,edition,add_escaping(v)). 1083
 else 1084
 ;; We have five values packed together here 1085
 result := unpack(v,result). 1086
 end. 1087
 7: result := set(result,language,add_escaping(v)). 1088
 end. 1089
 end. 1090
 return result. 1091
end. 1092
 1093
function unpack(s,wfn). 1094
 ;; Argument s is a packed edition string, wfn is a WFN. 1095
 ;; Unpack its elements and set the attributes in wfn accordingly. 1096
 ;; Parse out the five elements. This is an extremely crude 1097
 ;; algorithm. 1098
 start := 1. 1099
 end := strchr(s,'~',start). 1100
 if (start = end) 1101
 then ed := "". 1102
 else ed := substr(s,start,end-start). 1103
 end. 1104
 start := end+1. 1105
 end := strchr(s,'~',start). 1106
 if (start = end) 1107
 then sw_ed := "". 1108
 else sw_ed := substr(s,start,end-start). 1109
 end. 1110
 start := end+1. 1111
 end := strchr(s,'~',start). 1112

 29

 if (start = end) 1113
 then t_sw := "". 1114
 else t_sw := substr(s,start,end-start). 1115
 end. 1116
 start := end+1. 1117
 end := strchr(s,'~',start). 1118
 if (start = end) 1119
 then t_hw := "". 1120
 else t_hw := substr(s,start,end-start). 1121
 end. 1122
 start := end+1. 1123
 if (start >= strlen(s)) 1124
 then oth := "". 1125
 else oth := substr(s,start,strlen(s)-start). 1126
 end. 1127
 wfn := set(wfn,edition,add_escaping(ed)). 1128
 wfn := set(wfn,sw_edition,add_escaping(sw_ed)). 1129
 wfn := set(wfn,target_sw,add_escaping(t_sw)). 1130
 wfn := set(wfn,target_hw,add_escaping(t_hw)). 1131
 wfn := set(wfn,other,add_escaping(oth)). 1132
 return wfn. 1133
end. 1134
 1135
function add_escaping(s). 1136
 ;; Scan the string s, looking for occurrences of printable 1137
 ;; non-alphanumerics. If found, add these to the output string 1138
 ;; preceded by the escape character. 1139
 result := "". 1140
 idx := 0. 1141
 while (idx < strlen(s)) 1142
 do 1143
 c := substr(s,idx,1). ; get the idx’th character of s. 1144
 if (is_alphanum(c)) 1145
 then 1146
 result := strcat(result,c). 1147
 else 1148
 result := strcat(result,'\’,c). 1149
 end. 1150
 idx := idx + 1. 1151
 end. 1152
 return result. 1153
end. 1154
 1155
function is_alphanum(c) 1156
 ;; Returns TRUE iff c is an uppercase letter, a lowercase letter, 1157
 ;; a digit, or the underscore, otherwise FALSE. 1158
end. 1159
 1160
function get_comp_uri(uri,i) 1161
 ;; Return the i’th CPE component of the URI. If i=0, 1162
 ;; return the URI scheme. For example, given URI: 1163
 ;; cpe:/a:foo::bar 1164

 30

 ;; get_comp_uri(uri,0) = "cpe:" 1165
 ;; get_comp_uri(uri,1) = "a" 1166
 ;; get_comp_uri(uri,2) = "foo" 1167
 ;; get_comp_uri(uri,3) = "" 1168
 ;; get_comp_uri(uri,4) = "bar" 1169
 ;; get_comp_uri(uri,5) = "" 1170
 ;; etc. 1171
end. 1172
 1173
function pct_decode(s) 1174
 ;; This function scans the string s and returns a copy 1175
 ;; with all percent-encoded characters decoded. This 1176
 ;; function is the inverse of pct_encode(s) defined in 1177
 ;; Section 6.2.2.3. This function should be robust to 1178
 ;; the possibility that ANY character, not just the required 1179
 ;; printable non-alphanumeric characters, might be percent 1180
 ;; encoded and will need to be properly decoded. 1181
end. 1182
 1183
function strchr(str,chr,off) 1184
 ;; Searches the string str for the character chr starting 1185
 ;; at offset off into the string. Returns the offset of 1186
 ;; the chr if found, otherwise nil. 1187
 ;; Defined similar to the standard C function strchr. 1188
 ;; But this version takes a third argument off
 ;; is an offset into the str to begin the search. 1190

, which 1189

end. 1191

6.2.3.3 Examples of unbinding a URI to a WFN 1192

This section provides a number of examples illustrating the results of unbinding a URI to a WFN. 1193

6.2.3.3.1 Example 1 1194

URI: cpe:/a:microsoft:internet_explorer:8.0.6001:beta 1195

Unbinds to this WFN: 1196
wfn:[part="a",vendor="microsoft",product="internet_explorer", 1197
version="8\.0\.6001",update="beta",edition=ANY, 1198
language=ANY] 1199

Notice how legacy edition and all the extended attributes are unbound to the logical value ANY. 1200

6.2.3.3.2 Example 2 1201

URI: cpe:/a:microsoft:internet_explorer:8.%42:sp%63 1202

Unbinds to this WFN: 1203
wfn:[part="a",vendor="microsoft",product="internet_explorer", 1204
version="8\.*",update="sp\?",edition=ANY,language=ANY] 1205

 31

Note how the two percent-encoded special characters are unbound with added quoting. 1206

6.2.3.3.3 Example 3 1207

URI: cpe:/a:hp:insight_diagnostics:7.4.0.1570::~~online~win2003~x64~ 1208

Unbinds to this WFN: 1209
wfn:[part="a",vendor="hp",product="insight_diagnostics", 1210
version="7\.4\.0\.1570",update=ANY,edition=ANY, 1211
sw_edition="online",target_sw="win2003",target_hw="x64", 1212
other=ANY] 1213

Note how the legacy edition attribute as well as the four extended attributes are unpacked from the edition 1214
component of the URI. 1215

6.2.3.3.4 Example 4 1216

URI: cpe:/a:hp:openview_network_manager:7.51:-:~~~linux~~ 1217

Unbinds to this WFN: 1218
wfn:[part="a",vendor="hp",product="openview_network_manager", 1219
version="7\.51",update=NA,edition=ANY,sw_edition=ANY, 1220
target_sw="linux",target_HW=ANY,other=ANY] 1221

Note how the lone hyphen in the update component is unbound to the logical value NA, and how all the 1222
other blanks embedded in the packed edition component unbind to ANY, with only the target_sw 1223
attribute actually specified. 1224

6.2.3.3.5 Example 5 1225

URI: cpe:/a:foo\bar:big%24money_2010:::~~special~ipod_touch~80gb~ 1226

Unbinds to this WFN: 1227
wfn:[part="a",vendor="foo\\bar",product="big\$money_2010", 1228
version=ANY,update=ANY,edition=ANY, 1229
sw_edition="special",target_sw="ipod_touch",target_hw="80gb", 1230
other=ANY] 1231

6.3 Formatted String Binding 1232

The formatted string binding is new to v2.3 of the CPE specification suite. In keeping with the spirit of 1233
the v2.2 specification, the formatted string binding looks similar to the URI binding; however, it is 1234
defines simply to be a “formatted string” rather than a URI in order to relax the requirements that 1235
typically apply to URIs as specified in [RFC3986]. 1236

The formatted string binding is a colon-delimited list of fields prefixed with the string “cpe23:”. Use of a 1237
prefix distinct from the v2.2 URI binding enables tools to inspect a given input string and use a simple 1238
syntactic test to determine whether to process the input as a URI or as a formatted string. The formal 1239
syntax of the formatted string binding is presented in ABNF in Section 6.3.1. 1240

 32

Similar to the URI binding, the formatted string binds the attributes in a WFN in a fixed order, separated 1241
by the colon character: 1242

cpe23: part : vendor : product : version : update : edition : 1243
 language : sw_edition : target_sw : target_hw : other 1244

In a formatted string binding, the alphanumeric characters plus hyphen (“-”), period (“.”) and underscore 1245
(“_”) appear explicitly. When used alone, the asterisk (“*”) represents the logical value ANY, and the 1246
hyphen (“-”) represents the logical value NA. All other non-alphanumeric characters, if used, must be 1247
preceded by the backslash. The special characters asterisk and question-mark may appear without a 1248
preceding backslash, in which case they are open to special interpretation at higher levels of the CPE 1249
specification stack. 1250

6.3.1 Syntax for Formatted String Binding 1251

The syntax of the formatted string binding is shown below. 1252

formstring = "cpe23:" component-list

component-list = part ":" vendor ":" product ":" version ":" update ":"

 edition ":" lang ":" sw_edition ":" target_sw ":"
 target_hw ":" other

part = "h" / "o" / "a" / logical
vendor = avstring
product = avstring
version = avstring
update = avstring
edition = avstring
lang = LANGTAG / logical
sw_edition = avstring
target_sw = avstring
target_hw = avstring
other = avstring

avstring = +(unreserved / special / quoted) / logical
logical = "*" / "-"
special = "*" / "?"
unreserved = LCALPHA / DIGIT / "-" / "." / "_"
quoted = escape (escape / special / punc)
escape = "\"
punc = "`" / "~" / "!" / "@" / "#" / "$" / "%" / "^" / "&"
 / "(" / ")" / "=" / "+" / "[" / "{" / "]" / "}"
 / "|" / ";" / ":" / "'" / DQUOTE / "<" / ">" / ","
 / "/"
LCALPHA = %x61-7A ; a-z
DIGIT = %x30-39 ; 0-9
DQUOTE = %x22 ; double-quote
LANGTAG = cf. [RFC4646]

Figure 6-2: ABNF for Formatted String Binding 1253

 33

6.3.2 Binding a WFN to a formatted string 1254

This section specifies the procedure for binding a WFN to a formatted string. Section 6.3.2.1 summarizes 1255
the algorithm in prose. Section 6.3.2.2 presents the pseudo-code for the algorithm. Section 6.3.2.3 1256
presents examples illustrating the results of binding various WFNs to formatted strings. 1257

6.3.2.1 Summary of algorithm 1258

The binding algorithm is very simple. The procedure iterates over the eleven (11) allowed attributes in a 1259
fixed order. Corresponding attribute values are obtained from the input WFN and conversions of logical 1260
values are applied. A result string is formed by concatenating the attribute values separated by colons. 1261

6.3.2.2 Pseudo-code for algorithm 1262

function bind_to_fs(w) 1263
 ;; Top-level function used to bind WFN w to formatted string. 1264
 ;; Initialize the output with the CPE v2.3 string prefix. 1265
 fs := "cpe23:". 1266
 for each a in {part,vendor,product,version,update,edition,language, 1267
 sw_edition,target_sw,target_hw,other} 1268
 do 1269
 v := bind_value_for_fs(get(w,a)). 1270
 fs := strcat(fs,v,":"). 1271
 end. 1272
 return trim(fs). 1273
end. 1274
 1275
function bind_value_for_fs(v) 1276
 ;; Convert the value v to its proper string representation for 1277
 ;; insertion into the formatted string. 1278
 case v: 1279
 ANY: return("*"). 1280
 NA: return("-"). 1281
 else: return process_escaped_chars(v). 1282
 end. 1283
end. 1284
 1285
function process_escaped_chars(s) 1286
 ;; Inspect each character in string s. Certain nonalpha 1287
 ;; characters pass thru without escaping into the result, 1288
 ;; but most retain escaping. 1289
 result := "". 1290
 idx := 0. 1291
 while (idx < strlen(s)) 1292
 do 1293
 c := substr(s,idx,1). ; get the idx’th character of s. 1294
 if c != “\” 1295
 then 1296
 ;; un-escaped characters pass thru unharmed 1297
 result := strcat(result,c). 1298
 else 1299

 34

 ;; Escaped characters are examined 1300
 nextchr := substr(s,idx+1,1). 1301
 case nextchr: 1302
 ;; the period, hyphen and underscore pass unharmed. 1303
 “.”: 1304
 “-”: 1305
 “_”: result := strcat(result,nextchr). 1306
 else: 1307
 ;; all others retain escaping 1308
 result := strcat(result,"\",c). 1309
 idx := idx + 2. 1310
 continue. 1311
 end. 1312
 endif. 1313
 idx := idx + 1. 1314
 end. 1315
 return result. 1316
end. 1317

6.3.2.3 Examples of binding a WFN to a formatted string 1318

This section presents examples illustrating the results of binding various WFNs to formatted strings. 1319

6.3.2.3.1 Example 1 1320

Suppose one had created the WFN below to describe this product: Microsoft Internet Explorer 8.0.6001 1321
Beta (any language): 1322

wfn:[part="a",vendor="microsoft",product="internet_explorer", 1323
version="8\.0\.6001",update="beta",edition=ANY] 1324

This WFN binds to the following formatted string: 1325
cpe23:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:* 1326

Note how the unspecified attributes bind to “*” in the formatted string binding. 1327

6.3.2.3.2 Example 2 1328

Suppose one had created the WFN below to describe this product: Microsoft Internet Explorer 8.* SP? 1329
(any edition): 1330

wfn:[part="a",vendor="microsoft",product="internet_explorer", 1331
version="8\.*",update="sp?",edition=ANY] 1332

This WFN binds to the following formatted string: 1333
cpe23:a:microsoft:internet_explorer:8.*:sp?:*:*:*:*:*:* 1334

Note how the unspecified attributes default to ANY and are thus bound to “*”. Also note how the 1335
unquoted special characters in the WFN are carried over into the formatted string. Their special 1336
functionality in the WFN is preserved in the binding. If instead one wanted to block the special 1337
interpretation of the asterisk, it should be preceded by the escape character in the WFN: 1338

 35

wfn:[part="a",vendor="microsoft",product="internet_explorer", 1339
version="8\.*",update="sp?"] 1340

This WFN binds to the following formatted string: 1341
cpe23:a:microsoft:internet_explorer:8.*:sp?:*:*:*:*:*:* 1342

In this case, the escape character appears explicitly in the binding, blocking the interpretation of the 1343
asterisk. The unquoted question mark retains any special interpretation it may have in the binding. 1344

6.3.2.3.3 Example 3 1345

Suppose one had created the WFN below to describe this product: HP Insight Diagnostics 7.4.0.1570 1346
Online Edition for Windows 2003 x64: 1347

wfn:[part="a",vendor="hp",product="insight_diagnostics", 1348
version="7\.4\.1570",update=NA, 1349
sw_edition="online",target_sw="win2003",target_hw="x64"] 1350

This WFN binds to the following formatted string: 1351
cpe23:a:hp:insight_diagnostics:7.4.1570:-:*:*:online:win2003:x64:* 1352

Notice how the NA binds to the lone hyphen, the unspecified edition, language and other all bind to the 1353
asterisk, and the extended attributes appear in their own fields. 1354

6.3.2.3.4 Example 4 1355

Suppose one had created the WFN below to describe this product: HP OpenView Network Manager 7.51 1356
(any update) for Linux: 1357

wfn:[part="a",vendor="hp",product="openview_network_manager", 1358
version="7\.51",target_sw="linux"] 1359

This WFN binds to the following formatted string: 1360
cpe23:a:hp:openview_network_manager:7.51:*:*:*:*:linux:*:* 1361

Note how the unspecified attributes update, edition, language, sw_edition, target_hw, and other all bind to 1362
an asterisk in the formatted string. 1363

6.3.2.3.5 Example 5 1364

Suppose one had created the WFN below to describe this product: Foo\Bar Big$Money 2010 Special 1365
Edition for iPod Touch 80GB: 1366

wfn:[part="a",vendor="foo\\bar",product="big\$money_2010", 1367
sw_edition="special",target_sw="ipod_touch",target_hw="80gb"] 1368

This WFN binds to the following formatted string: 1369
cpe23:a:foo\\bar:big\$money_2010:*:*:*:*:special:ipod_touch:80gb:* 1370

Note how the \\ and \$ carry over into the binding, and how all the other unspecified attributes bind to the 1371
asterisk. 1372

 36

6.3.3 Unbinding a formatted string to a WFN 1373

Given a formatted string binding, the procedure to unbind it to a WFN is specified in pseudo-code below. 1374
The top-level unbinding function, unbind_fs, is called with the formatted string to be unbound as its 1375
only argument. The pseudo-code references the defined operations on WFNs (cf. 5.6) as well as a 1376
number of helper functions also defined in pseudo-code. Section 6.3.3.1 summarizes the algorithm in 1377
prose. Section 6.3.3.2 provides the pseudo-code for the algorithm. Section 6.3.3.3 provides examples of 1378
unbinding formatted strings to WFNs. 1379

6.3.3.1 Summary of algorithm 1380

Unbinding a formatted string is very simple, since the attribute values are encoded explicitly and in a 1381
fixed left-to-right order in the binding, delimited by colons. (Because a colon may appear embedded in a 1382
value string if preceded by the escape character, the parsing function needs to ignore escaped colons.) 1383
The algorithm parses the eleven fields of the formatted string, then unbinds each string result. If a field 1384
contains only an asterisk, it is unbound to the logical value ANY. If a field contains only a hyphen, it is 1385
unbound to the logical value NA. Quoting of non-alphanumeric characters is restored as needed, but the 1386
two special characters (asterisk and question-mark) are permitted to appear without a preceding escape 1387
character. 1388

6.3.3.2 Pseudo-code for algorithm 1389

function unbind_fs(fs) 1390
 ;; Top-level function to unbind a formatted string fs to a wfn. 1391
 result := new(). 1392
 for a = 1 to 11 1393
 do 1394
 v := get_comp_fs(fs,a). ; get the a’th field string 1395
 v := unbind_value_fs(v). ; unbind the string 1396
 ;; set the value of the corresponding attribute. 1397
 case a: 1398
 1: result := set(result,part,v). 1399
 2: result := set(result,vendor,v). 1400
 3: result := set(result,product,v). 1401
 4: result := set(result,version,v). 1402
 5: result := set(result,update,v). 1403
 6: result := set(result,edition,v). 1404
 7: result := set(result,language,v). 1405
 8: result := set(result,sw_edition,v). 1406
 9: result := set(result,target_sw,v). 1407
 10: result := set(result,target_hw,v). 1408
 11: result := set(result,other,v). 1409
 end. 1410
 end. 1411
 return result. 1412
end. 1413
 1414
function get_comp_fs(fs,i) 1415
 ;; Return the i’th field of the formatted string. If i=0, 1416
 ;; return the string to the left of the first forward slash. 1417

 37

 ;; The colon is the field delimiter unless prefixed by a 1418
 ;; backslash. 1419
 ;; For example, given the formatted string: 1420
 ;; cpe23:a:foo:bar\:mumble:1.0:*:… 1421
 ;; get_comp_fs(fs,0) = "cpe23" 1422
 ;; get_comp_fs(fs,1) = "a" 1423
 ;; get_comp_fs(fs,2) = "foo" 1424
 ;; get_comp_fs(fs,3) = "bar\:mumble" 1425
 ;; get_comp_fs(fs,4) = "1.0" 1426
 ;; etc. 1427
end. 1428
 1429
function unbind_value_fs(s) 1430
 ;; Takes a string value s and returns the appropriate logical 1431
 ;; value if s is the bound form of a logical value. If s is some 1432
 ;; general value string, add escaping of non-alphanumerics as 1433
 ;; needed. 1434
 case s: 1435
 "*": return ANY. 1436
 "-": return NA. 1437
 else: 1438
 ;; add escaping to any unquoted non-alphanumeric characters, 1439
 ;; but leave the two special characters alone, as they may 1440
 ;; appear quoted or unquoted. 1441
 return add_escaping(s). 1442
 end. 1443
end. 1444
 1445
function add_escaping(s) 1446
 ;; Inspect each character in string s. Copy quoted characters, 1447
 ;; with their escaping, into the result. Look for unquoted non 1448
 ;; alphanumerics and if not “*” or “?”, add escaping. 1449
 result := "". 1450
 idx := 0. 1451
 while (idx < strlen(s)) 1452
 do 1453
 c := substr(s,idx,1). ; get the idx’th character of s. 1454
 if (is_alphanum(c) or c = "*" or c = "?") then 1455
 ;; letters, digits, underscores pass untouched, 1456
 ;; and the same goes for the two special characters. 1457
 result := strcat(result,c). 1458
 idx := idx + 1. 1459
 continue. 1460
 endif. 1461
 if c = "\" then 1462
 ;; anything escaped in the bound string stays escaped 1463
 ;; in the unbound string. 1464
 result := strcat(result,substr(s,idx,2)). 1465
 idx := idx + 2. 1466
 continue. 1467
 endif. 1468
 ;; all other characters must be escaped 1469

 38

 result := strcat(result, "\",c). 1470
 idx := idx + 1. 1471
 end. 1472
 return result. 1473
end. 1474

6.3.3.3 Examples of unbinding a formatted string to a WFN 1475

This section provides a number of examples illustrating the results of unbinding a formatted string to a 1476
WFN. 1477

6.3.3.3.1 Example 1 1478

FS: cpe23:a:microsoft:internet_explorer:8.0.6001:beta:*:*:*:*:*:* 1479

Unbinds to this WFN: 1480
wfn:[part="a",vendor="microsoft",product="internet_explorer", 1481
version="8\.0\.6001",update="beta",edition=ANY,language=ANY, 1482
sw_edition=ANY,target_sw=ANY,target_hw=ANY,other=ANY] 1483

Notice how the periods in the version string are quoted in the WFN, and all the asterisks are unbound to 1484
the logical value ANY. 1485

6.3.3.3.2 Example 2 1486

FS: cpe23:a:microsoft:internet_explorer:8.*:sp?:*:*:*:*:*:* 1487

Unbinds to this WFN: 1488
wfn:[part="a",vendor="microsoft",product="internet_explorer", 1489
version="8\.*",update="sp?",edition=ANY,language=ANY, 1490
sw_edition=ANY,target_sw=ANY,target_hw=ANY,other=ANY] 1491

Note how the embedded special characters are unbound untouched in the WFN. 1492

6.3.3.3.3 Example 3 1493

FS: cpe23:a:hp:insight_diagnostics:7.4.1570:-:*:*:online:win2003:x64:* 1494

Unbinds to this WFN: 1495
wfn:[part="a",vendor="hp",product="insight_diagnostics", 1496
version="7\.4\.0\.1570",update=NA,edition=ANY,language=ANY, 1497
sw_edition="online",target_sw="win2003",target_hw="x64", 1498
other=ANY] 1499

Note how the lone hyphen in the update field unbinds to the logical value NA, and how the lone asterisks 1500
unbind to the logical value ANY. 1501

 39

6.3.3.3.4 Example 4 1502

FS: cpe23:a:foo\\bar:big\$money:2010:*:*:*:special:ipod_touch:80gb:* 1503

Unbinds to this WFN: 1504
wfn:[part="a",vendor="foo\\bar",product="big\$money", 1505
version="2010",update=ANY,edition=ANY,language=ANY, 1506
sw_edition="special",target_sw="ipod_touch",target_hw="80gb", 1507
other=ANY] 1508

Note how the quoted special characters retain their quoting in the WFN. 1509

 40

7. Conversions 1510

This section specifies the procedures for converting between the two required bound forms of WFNs. 1511
Section 7.1 specifies the procedure for converting a URI binding to a formatted string binding, and 1512
Section 7.2 specifies the inverse conversion. 1513

7.1 Converting a URI to a Formatted String 1514

Given a URI u which conforms to the CPE v2.2 specification, the procedure for converting it to a 1515
formatted string fs has two steps: 1516

function convert_uri_to_fs(u) 1517
 w := unbind_uri(u). 1518
 fs := bind_to_fs(w). 1519
 return fs. 1520
end. 1521
 1522
Note: 1523

If one starts with a URI (e.g., a legacy CPE name from the v2.2 official dictionary), converts it to 1524
a formatted string, then back to a URI (using convert_fs_to_uri in Section 7.2), one will 1525
end up with the same URI one started with. That is, the URI-FS-URI conversion path is round 1526
trip safe. 1527

7.2 Converting a Formatted String to a URI 1528

Given a formatted string fs which conforms to the description in Section 6.3.2, the procedure for 1529
converting it to a URI has two steps: 1530

function convert_fs_to_uri(fs) 1531
 w := unbind_fs(fs). 1532
 uri := bind_to_uri(w). 1533
 return uri. 1534
end. 1535
 1536
Notes: 1537

Note that if one starts with a formatted string, converts it to a URI, then back to a formatted string 1538
(using convert_uri_to_fs in Section 7.1), there is no guarantee that one will end up with 1539
the same formatted string one started with. The formatted string binding allows the introduction 1540
of new features that are unsupported in the backward-compatible URI binding; these features, if 1541
used, will not survive a round-trip conversion process. That is, the FS-URI-FS conversion path is 1542
not round trip safe. The conversion to a backward-compatible name form is specified here 1543
principally for use by curators of v2.3-conformant dictionaries, so they can automatically convert 1544
newly-created names into a backward-compatible format for use by legacy tools. Such cross-1545
version interoperability cannot be fully supported, however, given the new features of the v2.3 1546
CPE Specification Stack. 1547

41

Appendix A—Use Cases 1548

There are many areas within the security automation community which can benefit from CPE. Over the 1549
course of CPE’s development, four use cases emerged as primary drivers of technical requirements: 1550

1. Software inventory 1551
2. Network-based discovery 1552
3. Forensic analysis/system architecture 1553
4. IT management 1554

We summarize these use cases in the next four subsections.6

A.1 Software Inventory Use Case 1560

 Note that version 2.2 of the CPE 1555
specification was intended primarily to support the Software Inventory Use Case. The new version of 1556
CPE specified using the CPE Specification Stack is still primarily focused on the Software Inventory Use 1557
Case, however, by adding support for wildcards (using the special characters asterisk and question mark) 1558
we have attempted to expand the scope of CPE somewhat to include network-based discovery. 1559

Software inventory management products include configuration audit, endpoint management, and asset 1561
inventory tools. Such products typically have credentialed (authenticated) access to end systems. In this 1562
technical use case, a software inventory management product vendor uses CPE Names to tag data 1563
elements within their product's data model. These data elements may directly represent the individual 1564
software products that exist on a computing endpoint (e.g., a laptop, desktop, or server), in which case the 1565
CPE Name represents a standardized identifier for instances of that record type. Alternatively, the data 1566
elements may represent some other object (e.g., a configuration check, a vulnerability check, a patch 1567
check, a configuration control change, or a patch), in which case the CPE Name implies a relationship to 1568
a software product as identified by the CPE Name. With this tagging, the product vendor can develop, or 1569
can enable their product to interoperate with, different tools that share information about the individual 1570
software products on the end systems. Whether those tools perform asset management, vulnerability 1571
management, configuration assessments, or tactical descriptions of a given network, they have a common 1572
need to share software inventory information. The tools are expected to use CPE Names for this purpose. 1573

A.2 Network-Based Discovery Use Case 1574

Some enterprise users and tool developers are involved with network-based discovery of information that 1575
is performed without credentialed access to end systems. Their desire is to use CPE to tag the assets found 1576
and thus enable sharing of information with other information data sources. Unfortunately, 1577
unauthenticated network-based discovery often results in only partial information. Sometimes, full details 1578
cannot be determined in this way, but can only be obtained by a credentialed access to the end system. 1579
This results for the need for terms like “linux” or “printer” when the discovery algorithms can determine 1580
this level of information but nothing more. To support this, some tool developers have implemented a 1581
higher level roll-up capability as part of their user interface. That capability incorporates proprietary 1582
categorizations of network functionality and reflects the developer’s perspective on discoverable assets. 1583

6 Some of the material in this section comes from Common Platform Enumeration Technical Use Case Analysis, The MITRE
Corporation, November 2008. Cf. http://cpe.mitre.org/files/cpe_technical_use_cases.

42

A.3 Forensic Analysis/System Architecture Use Case 1584

In the forensic analysis technical use case, tools are looking to tag things that are of interest to the forensic 1585
analysis being done. This need is driven by the fact that information about a specific vulnerability needs 1586
to be associated with the “thing” that it applies to. Unfortunately, many of the “things” that have 1587
vulnerabilities are artifacts or components contained within software products and are not products in and 1588
of themselves. Examples include drivers and individual DLL files. Historically, CPE has deliberately 1589
limited its scope to focus on naming “whole” products, as opposed to product parts or components. 1590

A.4 IT Management Use Case 1591

In the IT management view, platforms play functional roles (e.g., server). Some IT managers have 1592
expressed the desire to have lower-level CPE names roll up of somehow link to these functional roles. 1593
This is currently outside the scope of CPE. Unfortunately, the naming conventions for functional roles do 1594
not align with the current CPE convention for naming software and hardware products, which is based on 1595
the “who produced it?” perspective, not the “what is it used for?” perspective. 1596

43

Appendix B—Change Log 1597

• Initial draft specification released to the CPE community as a read ahead for the CPE Developer 1599
Days Workshop 1600

Release 0 – 9 June 2010 1598

• Minor edits to audience description. 1602
Release 1 – 23 June 2010 1601

• Minor editorial changes throughout the document. 1603
• In section on Conformance, added a requirement that claims of conformance be made explicit in 1604

product documentation. Modified the third clause to allow conformers to "produce and/or 1605
consume", that is, an "and" became an "and/or", since some applications only need to produce 1606
and others only need to consume. Relaxed the requirement to consume legacy CPE names from a 1607
MUST to a SHOULD, since some applications may have no need to consume legacy content. 1608

• Added an ABNF grammar to define character strings permitted as attribute values in WFNs. 1609
• Switched to using the words/phrases "to quote" and "quoting" in place of "to escape" and 1610

"escaping" when referring to use of the escape character, to be more consistent with standard 1611
regular expression usage. 1612

• Removed all mention of and support for the logical value UNKNOWN. 1613
• Clarified the view that the logical value NA should also be used if an attribute value is assessed to 1614

be null. 1615

	1. Introduction
	1.1 Purpose and Scope
	1.2 Scope
	1.2.1 Description vs. Identification
	1.2.2 Class vs. Instance
	1.2.3 Out of Scope

	1.3 Normative References
	1.4 Document Structure
	1.5 Document Conventions

	2. Terms, Definitions and Abbreviations
	2.1 Terms and Definitions
	2.1.1 Application
	2.1.2 Asset Inventory Tool
	2.1.3 Bind
	2.1.4 Bundle
	2.1.5 Component
	2.1.6 Computing Device
	2.1.7 Configuration Item
	2.1.8 Hardware Device
	2.1.9 Operating System
	2.1.10 Platform
	2.1.11 Product
	2.1.12 Release
	2.1.13 Software
	2.1.14 Software Creator
	2.1.15 Software Manufacturer
	2.1.16 Software Package
	2.1.17 Unbind
	2.1.18 Uniform Resource Identifier

	2.2 Abbreviated Terms

	3. Conformance
	4. Relationship to Existing Specifications and Standards
	4.1 Relationship to CPE v2.2
	4.2 Relationship to ISO/IEC 19770-2

	5. Data Model Overview
	5.1 Motivation
	5.2 Definitions and Notation
	5.2.1 Well-Formed CPE Name
	5.2.2 Notation

	5.3 Well-Formedness Criteria
	5.4 Attributes
	5.5 Requirements on Attribute Values in WFNs
	5.5.1 Logical values of WFNs
	5.5.2 Restrictions on attribute value strings
	5.5.3 Per-attribute value restrictions
	5.5.3.1 Part
	5.5.3.2 Vendor
	5.5.3.3 Product
	5.5.3.4 Version
	5.5.3.5 Update
	5.5.3.6 Edition
	5.5.3.7 SW_Edition
	5.5.3.8 Target_SW
	5.5.3.9 Target_HW
	5.5.3.10 Language
	5.5.3.11 Other

	5.6 Operations on WFNs
	5.6.1 Function new()
	5.6.2 Function get(w,a)
	5.6.3 Function set(w,a,v)

	5.7 Examples

	6. Implementation and Binding
	6.1 Notes on Pseudo-Code
	6.2 URI Binding
	6.2.1 URI Binding Syntax
	6.2.2 Binding a WFN to a URI
	6.2.2.1 Notes on URI binding procedure
	6.2.2.2 Summary of algorithm
	6.2.2.3 Pseudo-code for algorithm
	6.2.2.4 Examples of binding a WFN to a URI
	6.2.2.4.1 Example 1
	6.2.2.4.2 Example 2
	6.2.2.4.3 Example 3
	6.2.2.4.4 Example 4
	6.2.2.4.5 Example 5

	6.2.3 Unbinding a URI to a WFN
	6.2.3.1 Summary of algorithm
	6.2.3.2 Pseudo-code for algorithm
	6.2.3.3 Examples of unbinding a URI to a WFN
	6.2.3.3.1 Example 1
	6.2.3.3.2 Example 2
	6.2.3.3.3 Example 3
	6.2.3.3.4 Example 4
	6.2.3.3.5 Example 5

	6.3 Formatted String Binding
	6.3.1 Syntax for Formatted String Binding
	6.3.2 Binding a WFN to a formatted string
	6.3.2.1 Summary of algorithm
	6.3.2.2 Pseudo-code for algorithm
	6.3.2.3 Examples of binding a WFN to a formatted string
	6.3.2.3.1 Example 1
	6.3.2.3.2 Example 2
	6.3.2.3.3 Example 3
	6.3.2.3.4 Example 4
	6.3.2.3.5 Example 5

	6.3.3 Unbinding a formatted string to a WFN
	6.3.3.1 Summary of algorithm
	6.3.3.2 Pseudo-code for algorithm
	6.3.3.3 Examples of unbinding a formatted string to a WFN
	6.3.3.3.1 Example 1
	6.3.3.3.2 Example 2
	6.3.3.3.3 Example 3
	6.3.3.3.4 Example 4

	7. Conversions
	7.1 Converting a URI to a Formatted String
	7.2 Converting a Formatted String to a URI
	Appendix A— Use Cases
	A.1 Software Inventory Use Case
	A.2 Network-Based Discovery Use Case
	A.3 Forensic Analysis/System Architecture Use Case
	A.4 IT Management Use Case
	Appendix B— Change Log

